Bäcklund transformation and nonlinear superposition formula of an extended Lotka - Volterra equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J. Phys. A: Math. Gen. 303635
(http://iopscience.iop.org/0305-4470/30/10/034)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:19

Please note that terms and conditions apply.

Bäcklund transformation and nonlinear superposition formula of an extended Lotka-Volterra equation

Xing-Biao Hu† and R K Bullough \ddagger
\dagger State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific Engineering Computing, Academia Sinica, PO Box 2719, Beijing 100080, People's Republic of China§
\ddagger Department of Mathematics, UMIST, PO Box 88, Manchester M60 1QD, UK

Received 21 November 1996, in final form 5 February 1997

Abstract

An extended Lotka-Volterra equation is considered, and a Bäcklund transformation and a nonlinear superposition formula given for it. Multiple soliton solutions are derived step by step as an application of the obtained results. Thus the N-soliton conjecture by Narita is confirmed.

1. Introduction

The so-called Lotka-Volterra equation is

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} N_{n}=\left(N_{n-1}-N_{n+1}\right) N_{n} \tag{1}
\end{equation*}
$$

which expresses a sequence of ecological pre-predator processes [1]. It also finds applications in other areas such as plasma physics [2]. It is known that equation (1) is completely integrable, for example, (1) has an N-soliton solution [3] and infinite number of conserved quantities [1]. As an extended version of (1), Itoh [4] has proposed an equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} N_{n}=\sum_{r=1}^{k-1}\left(N_{n-r}-N_{n+r}\right) N_{n} \tag{2}
\end{equation*}
$$

Much research on this equation has been conducted. Itoh [4] gave its conserved quantities with periodic boundary condition. Two soliton solutions for (2) on an infinite chain have been obtained by Narita [5]. Bogoyavlensky [6] has found the Lax form for (2). In [7], the recursion operator for (2) with $k=3$ was given and higher symmetries were presented. It is noted that a higher-order version of (1) was also considered by Nagai and Satsuma [8].

In the following, we will follow the notations as in [5] and consider

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{~d} t} \prod_{i=0}^{m-1} a_{n-((m-1) / 2)+i}=\prod_{i=0}^{k-1} a_{n+((m-1) / 2)+i-(k-1)}-\prod_{i=0}^{k-1} a_{n-((m-1) / 2)+i} \\
(m=1,2, \ldots ; k=1,2, \ldots, m \neq k) \tag{3}
\end{gather*}
$$

§ Mailing address.
or

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{~d} t} \prod_{i=0}^{m-1} a_{n-((m-1) / 2)+i}=\left(\prod_{i=0}^{-k-1} a_{n+((m+1) / 2)+i}\right)^{-1}-\left(\prod_{i=0}^{-k-1} a_{n-((m+1) / 2)+i+k+1}\right)^{-1} \\
(m=1,2, \ldots ;-k=1,2, \ldots) . \tag{4}
\end{gather*}
$$

It is easily shown that if $m=1$ in particular, (3) can be transformed into (2) on an infinite chain, using

$$
N_{n}=\prod_{i=0}^{k-2} a_{n+i-(k / 2)+1}
$$

By a transformation

$$
a_{n}=\frac{f_{n-(k+1) / 2} f_{n+(k+1) / 2}}{f_{n-(k-1) / 2} f_{n+(k-1) / 2}}
$$

equations (3) and (4) can be transformed into the following bilinear equation [5]:

$$
\begin{equation*}
\left[D_{t} \sinh \left(\frac{1}{2} m D_{n}\right)-2 \sinh \left(\frac{1}{2} k D_{n}\right) \sinh \left(\frac{1}{2}(m-k) D_{n}\right)\right] f_{n} \cdot f_{n}=0 \tag{5}
\end{equation*}
$$

Equation (5) is reduced to the Lokta-Volterra equation or a differential-difference analogue of the KdV equation [9] corresponding to the choices of $2 m=k$ or $m=-k$.

The purpose of this paper is to present a Bäcklund transformation and nonlinear superposition formula for (5). Using these results, multiple soliton solutions are derived step by step and therefore the N-soliton conjecture by Narita is confirmed.

This paper is organized as follows. In section 2 we give the Bäcklund transformation for the system equation (5). Then in section 3, we give a brief proof of a nonlinear superposition formula. Some particular solutions of equation (5) are then found through this formula. Finally, section 4 summarizes the results. A brief appendix lists some bilinear operator identities made use of in this paper.

2. A Bäcklund transformation for the extended Lotka-Volterra equation

In this section, we derive a Bäcklund transformation (BT) for equation (5). The result obtained is:

Proposition 1. A BT for (5) is

$$
\begin{gather*}
\exp \left(\frac{1}{2}(m-k) D_{n}\right) f_{n} \cdot f_{n}^{\prime}=\left[\lambda \exp \left(\frac{1}{2}(m+k) D_{n}\right)+\mu \exp \left(\frac{1}{2}(k-m) D_{n}\right)\right] f_{n} \cdot f_{n}^{\prime} \\
{\left[D_{t}-\lambda \exp \left(k D_{n}\right)-\gamma\right] f_{n} \cdot f_{n}^{\prime}=0} \tag{6}
\end{gather*}
$$

where λ, μ and γ are arbitrary constants.

Proof. We only need to prove, by using (6), that

$$
\begin{gathered}
P \equiv\left[\exp \left(\frac{1}{2} m D_{n}\right) f_{n}^{\prime} \cdot f_{n}^{\prime}\right]\left[D_{t} \sinh \left(\frac{1}{2} m D_{n}\right)-2 \sinh \left(\frac{1}{2} k D_{n}\right) \sinh \left(\frac{1}{2}(m-k) D_{n}\right)\right] f_{n} \cdot f_{n} \\
- \\
- \\
\left.\quad \exp \left(\frac{1}{2} m D_{n}\right) f_{n} \cdot f_{n}\right]\left[D_{t} \sinh \left(\frac{1}{2} m D_{n}\right)\right. \\
\left.-2 \sinh \left(\frac{1}{2} k D_{n}\right) \sinh \left(\frac{1}{2}(m-k) D_{n}\right)\right] f_{n}^{\prime} \cdot f_{n}^{\prime}=0
\end{gathered}
$$

Making use of (A.1)-(A.4) and (6), we find P can be rewritten as

$$
\begin{aligned}
P=2 \sinh \left(\frac{1}{2} m\right. & \left.D_{n}\right)\left(D_{t} f_{n} \cdot f_{n}^{\prime}\right) \cdot f_{n} f_{n}^{\prime} \\
& -2 \sinh \left(\frac{1}{2} k D_{n}\right)\left[\exp \left(\frac{1}{2}(m-k) D_{n}\right) f_{n} \cdot f_{n}^{\prime}\right]\left[\exp \left(\frac{1}{2}(k-m) D_{n}\right) f_{n} \cdot f_{n}^{\prime}\right] \\
= & 2 \sinh \left(\frac{1}{2} m D_{n}\right)\left(D_{t} f_{n} \cdot f_{n}^{\prime}\right) \cdot f_{n} f_{n}^{\prime} \\
& -2 \lambda \sinh \left(\frac{1}{2} k D_{n}\right)\left[\exp \left(\frac{1}{2}(m+k) D_{n}\right) f_{n} \cdot f_{n}^{\prime}\right]\left[\exp \left(\frac{1}{2}(k-m) D_{n}\right) f_{n} \cdot f_{n}^{\prime}\right] \\
= & 2 \sinh \left(\frac{1}{2} m D_{n}\right)\left[\left(D_{t}-\lambda \exp \left(k D_{n}\right)\right) f_{n} \cdot f_{n}^{\prime}\right] \cdot f_{n} f_{n}^{\prime}=0 .
\end{aligned}
$$

Thus we have completed the proof of proposition 1.
By use of (6), we can easily obtain the following solutions from the trivial solution $f_{n}=1$:

$$
f_{n}=1+\exp (2 \eta)
$$

with

$$
\lambda=\frac{\sinh (p(m-k))}{\exp (p k) \sinh (p m)} \quad \mu=1-\lambda \quad \gamma=-\lambda
$$

and

$$
f_{n}=n+\frac{k}{m}(m-k) t
$$

with $\lambda=(m-k) / m, \mu=k / m, \gamma=(k-m) / m$; where

$$
\eta=\omega t-p n+\eta^{0} \quad \omega=-\frac{\sinh (k p) \sinh (p(m-k))}{\sinh (m p)}
$$

and p, η^{0} are constants. In order to obtain more particular solutions, such as multi-soliton solutions, we need a nonlinear superposition formula for equation (5). This is found in the next section.

3. A nonlinear superposition formula

In the following, we shall simply denote, without confusion, $f_{n}(t)=f(n, t)=f(n)$ or f. The result reached is:

Proposition 2. Let f_{0} be a solution of equation (5) and suppose that $f_{i}(i=1,2)$ are solutions of (5) which are related to f_{0} under the BT equation (6) with parameters $\left(\lambda_{i}, \mu_{i}, \gamma_{i}\right)$, i.e. $f_{0} \xrightarrow{\left(\lambda_{i}, \mu_{i}, \gamma_{i}\right)} f_{i}(i=1,2), f_{j} \neq 0(j=0,1,2)$. Then f_{12} defined by $\exp \left(\frac{1}{2} k D_{n}\right) f_{0} \cdot f_{12}=c\left[\lambda_{1} \exp \left(-\frac{1}{2} k D_{n}\right)-\lambda_{2} \exp \left(\frac{1}{2} k D_{n}\right)\right] f_{1} \cdot f_{2}$
(c is a non-zero constant)
is a new solution which is related to f_{1} and f_{2} under the BT (6) with parameters $\left(\lambda_{2}, \mu_{2}, \gamma_{2}\right)$ and ($\lambda_{1}, \mu_{1}, \gamma_{1}$), respectively.

Proof. It suffices to show that
$\left[\exp \left(\frac{1}{2}(m-k) D_{n}\right)-\lambda_{2} \exp \left(\frac{1}{2}(m+k) D_{n}\right)-\mu_{2} \exp \left(\frac{1}{2}(k-m) D_{n}\right)\right] f_{1} \cdot f_{12}=0$
$\left[\exp \left(\frac{1}{2}(m-k) D_{n}\right)-\lambda_{1} \exp \left(\frac{1}{2}(m+k) D_{n}\right)-\mu_{1} \exp \left(\frac{1}{2}(k-m) D_{n}\right)\right] f_{2} \cdot f_{12}=0$
$\left[D_{t}-\lambda_{2} \exp \left(k D_{n}\right)-\gamma_{2}\right] f_{1} \cdot f_{12}=0$
$\left[D_{t}-\lambda_{1} \exp \left(k D_{n}\right)-\gamma_{1}\right] f_{2} \cdot f_{12}=0$.

From

$$
\begin{aligned}
& {\left[\exp \left(\frac{1}{2}(m-k) D_{n}\right) f_{0} \cdot f_{2}\right]\left[\exp \left(\frac{1}{2}(m-k) D_{n}\right)-\lambda_{1} \exp \left(\frac{1}{2}(m+k) D_{n}\right)\right.} \\
& \left.\quad-\mu_{1} \exp \left(\frac{1}{2}(k-m) D_{n}\right)\right] f_{0} \cdot f_{1}-\left[\exp \left(\frac{1}{2}(m-k) D_{n}\right) f_{0} \cdot f_{1}\right]\left[\exp \left(\frac{1}{2}(m-k) D_{n}\right)\right. \\
& \left.\quad-\lambda_{2} \exp \left(\frac{1}{2}(m+k) D_{n}\right)-\mu_{2} \exp \left(\frac{1}{2}(k-m) D_{n}\right)\right] f_{0} \cdot f_{2}=0
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\lambda _ { 2 } \operatorname { e x p } \left(\frac{1}{2}(m+\right.\right.} & \left.\left.k) D_{n}\right) f_{0} \cdot f_{2}\right]\left[\exp \left(\frac{1}{2}(m-k) D_{n}\right)-\lambda_{1} \exp \left(\frac{1}{2}(m+k) D_{n}\right)\right. \\
& \left.-\mu_{1} \exp \left(\frac{1}{2}(k-m) D_{n}\right)\right] f_{0} \cdot f_{1} \\
& -\left[\lambda_{1} \exp \left(\frac{1}{2}(m+k) D_{n}\right) f_{0} \cdot f_{1}\right]\left[\exp \left(\frac{1}{2}(m-k) D_{n}\right)\right. \\
& \left.-\lambda_{2} \exp \left(\frac{1}{2}(m+k) D_{n}\right)-\mu_{2} \exp \left(\frac{1}{2}(k-m) D_{n}\right)\right] f_{0} \cdot f_{2}=0
\end{aligned}
$$

we have, by use of equations (A.5), (7) and a detailed calculation,
$\exp \left(\frac{1}{2}(k+m) D_{n}\right) f_{0} \cdot f_{12}=c\left[-\mu_{1} \exp \left(\frac{1}{2}(m-k) D_{n}\right)+\mu_{2} \exp \left(\frac{1}{2}(k-m) D_{n}\right)\right] f_{1} \cdot f_{2}$.
$\exp \left(\frac{1}{2} m D_{n}\right) f_{0} \cdot f_{12}=c\left[-\mu_{1} \lambda_{2} \exp \left(\frac{1}{2} m D_{n}\right)+\lambda_{1} \mu_{2} \exp \left(-\frac{1}{2} m D_{n}\right)\right] f_{1} \cdot f_{2}$.
from which it follows that (8) and (9) hold by using (A.6). Furthermore, from
$\left[\left(D_{t}-\lambda_{1} \exp \left(k D_{n}\right)-\gamma_{1}\right) f_{0} \cdot f_{1}\right] f_{2}-\left[\left(D_{t}-\lambda_{2} \exp \left(k D_{n}\right)-\gamma_{2}\right) f_{0} \cdot f_{2}\right] f_{1}=0$
and

$$
\begin{aligned}
\lambda_{2}\left\{\exp \left(k \frac{\partial}{\partial n}\right)\right. & {\left.\left[D_{t}-\lambda_{1} \exp \left(k D_{n}\right)-\gamma_{1}\right] f_{0} \cdot f_{1}\right\} f_{2}(n) } \\
- & \lambda_{1}\left\{\exp \left(k \frac{\partial}{\partial n}\right)\left[D_{t}-\lambda_{2} \exp \left(k D_{n}\right)-\gamma_{2}\right] f_{0} \cdot f_{2}\right\} f_{1}(n)=0
\end{aligned}
$$

we have, by use of (A.7), (7) and a detailed calculation,
$-D_{t} f_{1}(n) \cdot f_{2}(n)+\left(\gamma_{2}-\gamma_{1}\right) f_{1}(n) f_{2}(n)-\frac{1}{c} \exp \left(k D_{n}\right) f_{0}(n) \cdot f_{12}(n)=0$
$\frac{1}{2 k} D_{t} f_{0}(n+k) \cdot f_{12}(n)+\frac{1}{2} \lambda_{2} D_{t} f_{1}(n+k) \cdot f_{2}(n)+\frac{1}{2} \lambda_{1} D_{t} f_{1}(n) \cdot f_{2}(n+k)$
$+\lambda_{2} \gamma_{1} f_{1}(n+k) f_{2}(n)-\lambda_{1} \gamma_{2} f_{1}(n) f_{2}(n+k)=0$.

$$
\begin{equation*}
+\lambda_{2} \gamma_{1} f_{1}(n+k) f_{2}(n)-\lambda_{1} \gamma_{2} f_{1}(n) f_{2}(n+k)=0 \tag{15}
\end{equation*}
$$

Finally, we can show that (10) and (11) hold by using (7), (14) and (15). Thus we have completed the proof of proposition 2.

As an application of this result, we give some particular solutions of (5).
Example 1. Choose $f_{0}=1, c=1 /\left(\lambda_{1}-\lambda_{2}\right)$. It is easily verified that

where
$F_{12} \equiv 1+\frac{\lambda_{1}-\lambda_{2} \mathrm{e}^{-2 p_{1} k}}{\lambda_{1}-\lambda_{2}} \mathrm{e}^{2 \eta_{1}}+\frac{\lambda_{2}-\lambda_{1} \mathrm{e}^{-2 p_{2} k}}{\lambda_{2}-\lambda_{1}} \mathrm{e}^{2 \eta_{2}}+\frac{\lambda_{1} \mathrm{e}^{-2 p_{2} k}-\lambda_{2} \mathrm{e}^{-2 p_{1} k}}{\lambda_{1}-\lambda_{2}} \mathrm{e}^{2\left(\eta_{1}+\eta_{2}\right)}$
and
$\eta_{i}=\omega_{i} t-p_{i} n+\eta_{i}^{0} \quad \omega_{i}=-\frac{\sinh \left(k p_{i}\right) \sinh \left(p_{i}(m-k)\right)}{\sinh \left(m p_{i}\right)}$
$\lambda_{i}=\frac{\sinh \left(p_{i}(m-k)\right)}{\exp \left(p_{i} k\right) \sinh \left(p_{i} m\right)} \quad \mu_{i}=1-\lambda_{i} \quad \gamma_{i}=-\lambda_{i} \quad(i=1,2)$.
p_{i} and η_{i}^{0} are constants. Thus F_{12} is a two-soliton solution of (5).
Furthermore, we have

where
$F_{13} \equiv 1+\frac{\lambda_{1}-\lambda_{3} \mathrm{e}^{-2 p_{1} k}}{\lambda_{1}-\lambda_{3}} \mathrm{e}^{2 \eta_{1}}+\frac{\lambda_{3}-\lambda_{1} \mathrm{e}^{-2 p_{3} k}}{\lambda_{3}-\lambda_{1}} \mathrm{e}^{2 \eta_{3}}+\frac{\lambda_{1} \mathrm{e}^{-2 p_{3} k}-\lambda_{3} \mathrm{e}^{-2 p_{1} k}}{\lambda_{1}-\lambda_{3}} \mathrm{e}^{2\left(\eta_{1}+\eta_{3}\right)}$
and

$$
\begin{gathered}
F_{123}=1+K_{1} \mathrm{e}^{2 \eta_{1}}+K_{2} \mathrm{e}^{2 \eta_{2}}+K_{3} \mathrm{e}^{2 \eta_{3}}+K_{12} \mathrm{e}^{2\left(\eta_{1}+\eta_{2}\right)}+K_{13} \mathrm{e}^{2\left(\eta_{1}+\eta_{3}\right)}+K_{23} \mathrm{e}^{2\left(\eta_{2}+\eta_{3}\right)} \\
+K_{123} \mathrm{e}^{2\left(\eta_{1}+\eta_{2}+\eta_{3}\right)}
\end{gathered}
$$

with
$K_{i}=\prod_{\substack{j=1 \\ j \neq i}}^{3} \frac{\lambda_{i}-\lambda_{j} \mathrm{e}^{-2 p_{i} k}}{\lambda_{i}-\lambda_{j}}$
$K_{i j}=\frac{\lambda_{i} \mathrm{e}^{-2 p_{j} k}-\lambda_{j} \mathrm{e}^{-2 p_{i} k}}{\lambda_{i}-\lambda_{j}} \frac{\lambda_{i}-\lambda_{6-i-j} \mathrm{e}^{-2 p_{i} k}}{\lambda_{i}-\lambda_{6-i-j}} \frac{\lambda_{j}-\lambda_{6-i-j} \mathrm{e}^{-2 p_{j} k}}{\lambda_{j}-\lambda_{6-i-j}} \quad i \neq j$
$K_{123}=\frac{\lambda_{1} \mathrm{e}^{-2 p_{2} k}-\lambda_{2} \mathrm{e}^{-2 p_{1} k}}{\lambda_{1}-\lambda_{2}} \frac{\lambda_{1} \mathrm{e}^{-2 p_{3} k}-\lambda_{3} \mathrm{e}^{-2 p_{1} k}}{\lambda_{1}-\lambda_{3}} \frac{\lambda_{2} \mathrm{e}^{-2 p_{3} k}-\lambda_{3} \mathrm{e}^{-2 p_{2} k}}{\lambda_{2}-\lambda_{3}}$.
Then F_{123} is a three-soliton solution of (5) where

$$
\begin{aligned}
& \eta_{3}=\omega_{3} t-p_{3} n+\eta_{3}^{0} \quad \omega_{3}=-\frac{\sinh \left(k p_{3}\right) \sinh \left(p_{3}(m-k)\right)}{\sinh \left(m p_{3}\right)} \\
& \lambda_{3}=\frac{\sinh \left(p_{3}(m-k)\right)}{\exp \left(p_{3} k\right) \sinh \left(p_{3} m\right)} \quad \mu_{3}=1-\lambda_{3} \quad \gamma_{3}=-\lambda_{3} .
\end{aligned}
$$

In general, we can obtain N-soliton solutions by successive use of (7).

Example 2. Choose $f_{0}=1, k=1$, we have

where

$$
\begin{aligned}
& F=-\lambda k+\left(\frac{m-k}{m}-\lambda\right)\left(n+\frac{k}{m}(m-k) t\right)-\lambda k \mathrm{e}^{2 \eta} \\
& \\
& \quad+\left(\frac{m-k}{m} \mathrm{e}^{-2 k p}-\lambda\right)\left(n+\frac{k}{m}(m-k) t\right) \mathrm{e}^{2 \eta} \\
& \eta=\omega t-p n+\eta^{0} \quad \omega=-\frac{\sinh (k p) \sinh (p(m-k))}{\sinh (m p)} \quad \lambda=\frac{\sinh (p(m-k))}{\exp (p k) \sinh (p m)} .
\end{aligned}
$$

and F is a solution of (5). Here p and η^{0} are constants.

4. Summary

We have given a Backlund transformation for the extended Lotka-Volterra equation as well as a nonlinear superposition formula for it; and from the latter we find 2-, 3-and, in general, N-soliton solutions of the system and other solutions. Thus the N-soliton conjecture by Narita is confirmed.

Acknowledgments

This work was partially supported by the TWAS under research grant No 93-109 Maths/AS, the National Natural Science Foundation of China and the Chinese Academy of Sciences.

Appendix

The following bilinear operator identities hold for arbitrary functions a, b, c and d of n and t :

$$
\begin{gather*}
{\left[D_{t} \sinh \left(\delta D_{n}\right) a \cdot a\right]\left[\exp \left(\delta D_{n}\right) b \cdot b\right]-\left[D_{t} \sinh \left(\delta D_{n}\right) b \cdot b\right]\left[\exp \left(\delta D_{n}\right) a \cdot a\right]} \\
=2 \sinh \left(\delta D_{n}\right)\left(D_{t} a \cdot b\right) \cdot a b \tag{A.1}
\end{gather*}
$$

$\left[\sinh \left(\delta_{1} D_{n}\right) \sinh \left(\delta_{2} D_{n}\right) a \cdot a\right]\left[\exp \left(\left(\delta_{1}+\delta_{2}\right) D_{n}\right) b \cdot b\right]$
$-\left[\sinh \left(\delta_{1} D_{n}\right) \sinh \left(\delta_{2} D_{n}\right) b \cdot b\right]\left[\exp \left(\left(\delta_{1}+\delta_{2}\right) D_{n}\right) a \cdot a\right]$
$=\sinh \left(\delta_{1} D_{n}\right)\left[\exp \left(\delta_{2} D_{n}\right) a \cdot b\right] \cdot\left[\exp \left(-\delta_{2} D_{n}\right) a \cdot b\right]$
$\sinh \left(\delta D_{n}\right) a \cdot a=0$
$\sinh \left(\delta_{1} D_{n}\right)\left[\exp \left(\left(\delta_{1}+\delta_{2}\right) D_{n}\right) a \cdot b\right] \cdot\left[\exp \left(\left(\delta_{1}-\delta_{2}\right) D_{n}\right) a \cdot b\right]$

$$
\begin{equation*}
=\sinh \left(\delta_{2} D_{n}\right)\left[\exp \left(2 \delta_{1} D_{n}\right) a \cdot b\right] \cdot a b \tag{A.4}
\end{equation*}
$$

$$
\begin{align*}
& {\left[\exp \left(\delta_{1} D_{n}\right) a \cdot b\right]\left[\exp \left(\delta_{2} D_{n}\right) a \cdot c\right]} \\
& \quad=\exp \left(\frac{1}{2}\left(\delta_{1}+\delta_{2}\right) D_{n}\right)\left[\exp \left(\frac{1}{2}\left(\delta_{1}-\delta_{2}\right) D_{n}\right) a \cdot a\right] \cdot\left[\exp \left(\frac{1}{2}\left(\delta_{1}-\delta_{2}\right) D_{n}\right) c \cdot b\right] \\
& \begin{aligned}
{\left[\exp \left(\delta_{1} D_{n}\right) a \cdot b\right]\left[\exp \left(\delta_{2} D_{n}\right) c \cdot d\right] }
\end{aligned} \quad=\exp \left(\frac{1}{2}\left(\delta_{1}-\delta_{2}\right) D_{n}\right)\left[\exp \left(\frac{1}{2}\left(\delta_{1}+\delta_{2}\right) D_{n}\right) a \cdot d\right] \cdot\left[\exp \left(\frac{1}{2}\left(\delta_{1}+\delta_{2}\right) D_{n}\right) c \cdot b\right] \text { (A.6) } \\
& \quad\left(D_{t} a \cdot b\right) c-\left(D_{t} a \cdot c\right) b=-a D_{t} b \cdot c .
\end{align*}
$$

References

[1] Manakov S V 1974 Sov. Phys.-JETP 40269
[2] Zakharov V E, Musher S L and Rubenchik A M 1974 JETP Lett. 19151
[3] Hirota R and Satsuma J 1976 J. Phys Soc. Japan 40891
Hirota R and Satsuma J 1976 Progr. Theor. Phys. Suppl. 59 64-100
[4] Itoh Y 1973 Ann. Inst. Stat. Math. 25635
Itoh Y 1987 Prog. Theor. Phys. 78507
[5] Narita K 1982 J. Phys. Soc. Japan 511682
[6] Bogoyavlensky 1988 Phys. Lett. 134A 34
[7] Zhang H-W, Tu G-Z, Oevel W and Fuchssteiner B 1991 J. Math. Phys. 32 1908-18
[8] Nagai A and Satsuma J 1995 J. Phys Soc. Japan 64 3669-74
[9] Hirota R 1977 J. Phys Soc. Japan 43 1424-33

